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Parameter effects on convergence Meshless 
Method by using Radial Basis Functions  

Jaouad EDDAOUDY*1, Touria BOUZIANE2 

 

Abstract— The numerical solution of partial differential equations (PDEs) resulting of physic problem formulations need appropriate 
approximation methods. The Point Interpolation Local Radial Method (LRPIM) is a recent numerical meshless method for solving PDEs. It 
is derived from the local weak form (WF) of the equilibrium equations. Radial Basis Functions (RBFs) are used as a trial function and a 
cubic spline functions are used as a test function of weighted residual method. In this paper, we present a study of a 2D problem of an 
elastostatic homogenous rectangular plate by using the LRPIM method. The numerical results are discussed in function of different regular 
distributions of nodes and by using different radial basis functions RBFs: Multi-quadrics (MQ) and Thin Plate Spline (TPS).  In this study, 
we come to the result that the effect of size parameters of subdomain and the specific parameters of RBFs basis are performed on the 
accuracy and convergence of the LRPIM method. Interesting numerical results are found and are identical with analytical solution. 

Index Terms— Meshless method, Local Radial Point Interpolation Method, Radial basis functions, shape parameters, elastostatic plate. 

——————————      —————————— 

1 INTRODUCTION                                                                     
umerical methods are indispensable for the successful 
simulation of physical problems, as the partial differen-
tial equations usually have to be approximated. 

Groups of meshfree methods have been developed to accom-
plish this task, such as Smooth Particle Hydrodynamics (SPH) 
method [1] in 1977 by Lucy and al., Diffuse Element Method 
(DEM) [2] in 1992 by Nayroles and al., Element Free Galerkin 
(EFG) method [3] in 1994 by Belytschko and al.. In 1998 and 
2001, Atluri and al. presented six Meshless Local Petrov–
Galerkin methods (MLPG) based on different test functions 
[4],[5]. The Point Interpolation Method (PIM) [6]-[9] is a 
meshfree method developed using Galerkin weak form and 
shape functions that are constructed based only on a group of 
nodes regularly distributed in a local support domain by 
means of interpolation. Radial Basis Functions (RBF) [10], [11] 
were first applied to solve partial differential equations in 1990 
by Kansa[12], [13] when a technique based on the direct Collo-
cation method and the Multiquadric RBF was used to model 
fluid dynamics problems. The direct Collocation procedure 
used by Kansa is relatively simple to implement; however, it 
results in an asymmetric system of equations due to the mix of 
governing equations and boundary conditions. The LRPIM 
approximation [14] using radial basis functions (RBFs) is 
based on MFree local Petrov Galerkin weak-form methods 
[15]-[17]. The major advantage of PIM is that the shape func-
tions created possess the Kronecker delta function property, 
which allows simple enforcement of essential boundary condi-
tions.  

 
 

This paper proposes a numerical study of 2D elastostatic prob 
lem by using LRPIM based on RBF functions. We choose Mul-
ti-quadrics (MQ) RBF [10], [11] (this function depends on two 
shape parameters αc and q) and thin plate spline (TPS) RBF 
[18] (it has one shape parameter η). The choice of shape pa-
rameters functions will affect the performance of LRPIM. The 
numerical performances of this method are investigated 
through different numerical values. In Section 2, the local 
weak form developed using weighted residual method locally 
from the partial differential equation. In Section 3, the radial 
basis function (RBF) used to develop the Local radial point 
interpolation method (LRPIM) shape functions for Mfree 
weak-form methods. Numerical results and discussion are 
presented in Section 4 to estimate the accuracy and efficiency 
of the LRPIM. The conclusion is given in Section 5. 

2 LOCAL RADIAL POINT INTERPOLATION METHOD 
(LRPIM) FORMULATION 

We consider the following two-dimensional static problem, in 
linear elasticity on the domain Ω bounded by the boundary Г 

                  

                                                                           

                                 
Where 
σij: is the stress tensor, 
bi: the body force, 
ūi: the prescribed displacements on essential boundary Гu, 
t ̄i:  the tractions on natural boundary Гt, 
nj: the direction index. 
The local weighted residual form defined over a local quadra-
ture domain Ωq bounded by Гq for a field node I has the fol-
lowing form: 

                             

Where ΘI is the weight or test function centered usually at node I.  
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Using  and the divergence theorem 
[22], we have 

 
The boundary ∂Ωq for the local quadrature domain Ωq is com-
posed of three parts (see fig.1). 
 
                                                    
Where 
Гqi: the internal boundary of the quadrature domain, which 
does not intersect with the global boundary Г, 
Гqt: the part of the natural boundary that intersects with the 
quadrature domain, 
Гqu: the part of the essential boundary that intersects with the 
quadrature domain. 
Therefore, Eq. (3) can be re-written as: 

 

      
For a local quadrature domain located entirely within the 
global domain, there is no intersection between Гq and the 
global boundary Г, thus, in this case 

 
There is no integral over Гqu and Гqt 

 
Considering the relation between the stress and the traction on 
the boundary 

 
The local weak form Eq. (6) is leading to local boundary inte-
gral equations: 

 
 

 

 

 

 

 

 

 

  

 

 
 

 

 

 

 

 

3  POINT INTERPOLATION USING RADIAL BASIS 
FUNCTIONS 

We consider a point  in the local support domain 
and the continuous function u defined on the problem do-
main. We use a field number of nodes: n in the local support 
domain to approximate the value uh(X) at the point X of func-
tion u in the form: 

 
 

Where 
n: the number of nodes in the local support domain. 
a: the vector of coefficients defined by 

 
Ri(X): the Radial basis function it is expressed as 

 
ri: the distance between point X= (x, y) and node (xi, yi) in a 
two dimensional problem 

 
The vector R has the form 

 
We used the following radial basis functions: 

 
TABLE I 

TYPICAL RADIAL BASIS FUNCTIONS WITH DIMENSIONLESS 
SHAPE PARAMETERS 

 
Name Expression Shape parameters 

     (real number) 
1.Multiquadratic(MQ) Ri(x,y)=(ri

2+(αcdc)2)q αc ≥0, q 
2.Thinplatespline(TPS) Ri(x,y) = ri

η η 
 

(5) 

(8) 

(9) 

(10) 

(11) 

(12) 

(4) 

(3) 

(6) 

(7) 

 

Fg. 1: The local sub-domains around point X and boundaries 
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The coefficients ai in Eq. (8) are determined by enforcing the 
interpolated function u through all the n nodes within the 
support domain.  
The numerical value at the kth point of the function u has the 
following form: 

 
with 

 
 

Eq. (8) can be expressed in matrix form as follows: 
 

 

Where U is the vector that collects all the field nodal varia-
bles of u at the n nodes of the support domain, a unique solu-
tion for vector of coefficients a is obtained if the inverse of  
exists: 

 
Substituting the foregoing equation into Eq. (8) leads to 

 
Where Φ(X) is the matrix of n shape functions 

 

 
Approximation for the displacement at a point X is 

 
 

It can also be written in the following form of nodal summa-
tion: 

 
Where ΦI is the matrix of shape functions of node I, and UI is 
the nodal displacements. 
The strains can be obtained by using the approximated dis-
placement 

 

 

 

 
Where B is the strain matrix. 
The stress vector using the constitutive equations for the mate-
rial at the point X in the problem domain can be written as: 

 

 
For an isotropic homogeneous material in the plane stress 
state, the matrix of material elastic constants D can be ex-
pressed as: 

 
The traction t at a point X has the following form 

 

 
In which  is the vector of the unit outward normal on 
the boundary. 
We now change Eq. (7) to the following matrix form to derive 
the discretized system equations in a matrix form 

 
Where Θ is a matrix of weight functions given by: 

 
WI is a matrix that collects the derivatives of the weight func-
tions 
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Substitution of Eqs. (22) and (25) into Eq. (26) leads to the fol-
lowing discretized system of equations for the Ith field node 

 
The matrix form of Eq. (29) can be written as: 

 
U is the vector that collect displacements at Ith node for the 
field nodes included in the considered support domain, 
 The matrix KI is called nodal stiffness matrix for the Ith field 
node, which is computed by using 

 
The nodal force vector FI with contributions from body forces 
applied in the problem domain 

 
Eq. (30) presents two linear equations for the Ith field node. 
Using Eq. (30) for all the  field nodes in the entire problem 
domain, we obtain a total of 2nt independent linear equations. 
Assemble all these 2nt equations based on the global number-
ing system to obtain the final global system equations in the 
form: 

 
We obtain 

 
Where 

is the global stiffness matrix for all nt nodes in the 
entire problem domain, 

 is the global displacement vector that collect the nod-
al displacements of all nt nodes in the entire problem domain, 

  is the global body force vector assembled using the 
nodal body force vectors for all nodes in the entire problem 
domain. 

4 NUMERICAL EXAMPLE 
In this section, we present a numerical study for elastostatic 2-
D problem of a cantilever rectangular homogeneous isotropic 
plate (Fig.2) [23]. The plate has a unit thickness and 
E=210.109P, ν=0.3, L=54m, D=12m and  P=1000N. We consider 

different numbers of field nodes 
nodes that are regularly distributed. 

Gauss quadrature using 4x4 Gauss points is employed in each 
background cell. 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
First, we studied the effect of the parameters of the radial basis 
functions RBF-MQ and the sizes of support and quadrature 
domain on convergence of the LRPIM method: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 displays the variation of energy error as a function of  
by the LRPIM methods using RBF-MQ (Table1). We consider 
different distribution node numbers . 
The results are obtained by using the values of  

=2.0, q=2.02 and =3.4. We found that all curves fall from 
maximum value of energy error in =1.0 to the minimum 
value in =16.8 for  or =10.3 for . 
The domain of convergence is very large and it is between 

 for  and is between 2.5 and 10.3 
for . For the values of greater than 16.8 
(for ), and greater than 10.3 (for ), the 
LRPIM method is not convergent. Note that the domain of 
convergence is larger than that given by [20]. 
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Fg.3: Influence of the shape parameter  on the accuracy of the 
results obtained using RBF-MQ with ,  and 
q=2.02  

 

 

 

 

 

   

 

 

Fg.2: Configuration and nodal arrangement for the cantilever 
plate 
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In fig. 4, shows the variation of energy error as a function of 
the parameter q of RBF-MQ, for different regular distribution 
node numbers with following fixed val-
ues ,  and . We note in the figure 
between q=-1.0 and q=0.2 the error decrease gradually, and 
between 0.2 and 3 the error is steady, but if the value of q is 
identical to 0.0, 1.0, 2.0 and 3.0 the energy error is very large 
and the LRPIM method is not convergent. We note that the 
domain of the convergence is broader than that given in the 
reference [19]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
In fig. 5, the dependence of energy error as a function of the 
size of the local quadrature domain  for different regular 
distribution node numbers 196 using radial 
basis RBF-MQ is investigated. For values ranging between 0.9 
and 2.5, the LRPIM method using RBF-MQ is convergent but 
if the value of  or , the energy error is very 
large and the LRPIM method is divergent.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 plots the energy error as a function of the size of the 

support domain . The result is calculated by the LRPIM 
method using RBF-MQ and by using the values of , 
q=0.98 and . It investigated the variation of maximum 
and minimum values of  of convergence domain by using 
the different distribution node num-
bers . It can be seen from this figure 
that if the values of αs is smaller than 1.8, the energy error is 
large and LRPIM method using RBF-MQ is not convergent. 
The domain of convergence reaches the maximum value at 

 for . For greater values 
of , the domain convergence is smaller 
than that obtained with and the greater extremity val-
ue of the convergence domain is now . We found a 
very significant result compared with the result obtained by 
the reference [21]. 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The displacement results as function of x with y =0 are plotted 
in Fig.7, the fixed values of; size of quadrature domain is 
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Fg.4: Influence of the shape parameter q on the accuracy of the 
results obtained using RBF-MQ with ,  and 
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Fg.5: Influence of the shape parameter  on the accuracy of the 
results obtained using RBF-MQ with ,  and 
q=2.02 
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Fg.6: Influence of the shape parameter  on the accuracy of the 
results obtained using RBF-MQ with ,  and 
q=0.98 
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Fg.7: Displacement  distribution along the neutral axis with 
shape parameters q=0.98,  and ,  
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 and size of support domain is . The shape 
parameters of RBF-MQ are also fixed (  and q=0.98). 
The effect of different node numbers on the displacement also 
presented in this figure. We note that the curves are identical 
for all node numbers  and the shape is identical to that ob-
tained by theoretical analysis (Analytical results). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have also used the radial basis function RBF-TPS to study 
the convergence of LRPIM method: 
Fig. 8 displays the variation of the energy error as a function of 
the shape parameter η for different values of node num-
bers . The result illustrated in this 
figure with the radial basis function RBF-TPS gives a domain 
of convergence very restricted for all different distribution 
node numbers. In this study, we have considered the single 
solution value η=4.0001. 
Fig.9 illustrates the energy error variation as a function of the 
size of the support domain α_s for different field node num-
bers 55, 91, 112, 196. It investigated the variation of maxi-
mum and minimum values of  of convergence domain. 
For , we note that the energy error value is greater 
than that obtained by . It can also be seen 
from this figure that if the values of  is smaller than 1.8 the 
energy error is large and LRPIM method is not convergent. 
The domain of convergence reaches the maximum value at 

for  and for  the greater ex-
tremity value of the convergence domain is  and the 
domain of convergence is smaller than that obtained for 

. The results obtained by the present method are in 
very good agreement with those obtained in the reference [21]. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Fig.10 gives the variation of the error energy as a function of 
the size of the local quadrature domain  by LRPIM method 
using RBF-TPS function with fixed values of shape parameter 
η=4.0001 and the size of support domain  for different 
field node numbers . We can say that the 
domain of the convergence is larger; it is between 0.6 and 2.7 
for  and between 0.6 and 3.0 for . We 
note that if the values of  is smaller than 0.6 or greater than 
2.7, the energy error is very high and the LRPIM method is not 
stable. 
Fig. 11, shows the variation of the effective transverse shear 
stress τxy as a functions of y with =3.0 and  and the 
shape parameter η =4.0001. The effect of different node num-
bers on the shear stress distributions on the cross-section at 
x=L is presented in this Figure; it shows that the accuracy is 
clear for all node numbers and the shape is identical to that 
obtained by theoretical analysis (Compared with analytical 
results). 
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Figure 8: Influence of the shape parameter η on the accuracy of 
the results obtained using RBF-TPS with  and  
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Figure10: Influence of the size of local support domain on the 
accuracy of the results obtained using RBF-TPS with  
and  
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igure 9: Influence of the size of local support domain on the 
accuracy of the results obtained using RBF-TPS with  

and  
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5 CONCLUSIONS 
In this paper, the Local Radial Point Interpolation Method 
LRPIM using RBFs functions based on the local residual for-
mulation is developed for solving a 2D elastostatic problem of 
a cantilever rectangular homogeneous isotropic plate. We 
studied the optimal shape parameters of RBF-MQ and Thin 
Plate Spline (RBF-TPS) basis. We also investigated the effect of 
the dimensionless sizes of the quadrature domain αq and the 
support domain αs with different node num-
bers . We conclude that: 
the effect of size parameter αs, for two Radial Basis Functions 
(RBF-MQ and RBF-TPS) the small values of  lead to the up-
per extremity of convergence domain which is limited to 

; concerning the effect for greater value of , the max-
imum value diminishes to . 
for the effect of specific parameters, the shape parameters αC 
and q, the results obtained by using RBF-MQ give a domain of 
convergence larger than that presented by other authors for  
and q. 
Compared with the analytical results, the LRPIM method pro-
duces a very good agreement for stresses and for displace-
ments. 
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Fig.11: Shear stress distribution along the line of X=L with shape 
parameter   and  
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